

Review Paper:

Offshore Wind Turbine Towers in India: Design considerations, Technological Advancements, Challenges and Opportunities

Chauhan Mita M.^{1*} and Shah Hemal J.²

1. Department of Applied Mechanics, Government Engineering College, Bharuch, INDIA

2. Department of Applied Mechanics, Government Engineering College, Valsad, INDIA

*mitachauhan1@gmail.com

Abstract

India's rapidly growing energy demands, driven by its economic expansion, necessitate a transition towards renewable energy sources and offshore wind energy presents a substantial opportunity in this context. Several leading nations including China, the USA, Germany, India, UK, Canada, Spain, Italy, France and Portugal, collectively account for approximately 86% of the global capacity for wind turbines, underscoring the importance of international collaboration and knowledge sharing in advancing wind energy technologies. This study explores the opportunities and challenges of offshore wind power in India, looking at the pressing need to diversify energy mix. The methodology employed in the study involves reading of related papers, government policies and technological progress in the area of offshore wind turbine technology and a discussion of the reasons and potential of the country in this sector. The key conclusions show that in many ways despite the great offshore wind energy potential in India, major obstacles still remain in the path as in terms of initial investment that is huge, as well as the technology and network grid connection. One of the challenges is that India has very vast coastline which is liable to natural calamities such as earthquakes and tsunamis. To fully exploit the offshore wind energy potential in a successful manner, the need is to develop a clear and independent system of policies and regulations, generation of the transfer of the technology agreements as well as an established grid and in-depth research work to overcome the technological challenges.

The results of this study suggest that the establishment of a viable solution to the identified problem can be achieved through the careful formulation of regulatory framework, the generation of financial benefits and the collaboration among the stakeholders involved can position India as a leader in offshore wind energy within the Asia-Pacific region. Moreover, encouragement of the local production of offshore wind turbine tower parts and the orientation towards new technologies, including floating offshore wind turbines

can stimulate the evolution of the sector and reduce the imports.

Keywords: Offshore wind energy, loads, soil structure interaction, Renewable energy, India, Policy framework, Technology, Sustainability, Grid connectivity, Investment costs.

Introduction

Offshore wind energy has emerged as a compelling renewable energy option, primarily due to its abundant wind more resources, greater scope of operation and less land requirements. Reaching renewable India, the renewable energy sector in India is one of the largest in the world and India has shown great promise in achieving renewable India. Energy goals necessitate a thorough investigation of offshore wind energy, with a particular emphasis on the design and technological advancements of offshore wind turbine towers³³. Offshore wind energy offers a great chance of India to diversify its energy sources and strengthen its energy security, as the country has a great potential of energy diversification and energy security enhancement and large coastline and growing energy needs³⁴.

Wind energy will be a pillar in all parts of the world of electricity production and estimates have shown that it is going to meet more than 20 percent of the world electricity needs in 2050³³. The structural integrity of offshore the most important factor is the wind turbine towers and it requires high level design consideration in order to sustain complex environmental conditions and make them reliable during their operating life⁶⁹. Whereas India has been able to harness various renewable energy sources, offshore wind energy remains largely untapped, despite the country having more than 7000 km of coastline, access to finances, technological expertise, project management resources, financial demand, a monopoly and an interest in green energy⁵⁵.

To fully realize the potential of offshore wind energy, India can leverage its experience in the onshore wind sector and adapt successful policies of the most developed European nations^{41,42}. The purpose of this study is to review offshore in a detailed manner. wind turbine towers and in particular regarding India, opportunities, challenges and design factors and technological changes and the aspects that could lead to the growth of the offshore wind energy sector in India. Offshore wind energy has emerged as a compelling

renewable energy option, primarily due to its abundant wind resources, longer range of operation and lesser land requirement. The renewable energy potential of India was to be achieved by achieving the energy goals necessitating a thorough investigation of offshore wind energy, with a particular emphasis on the design and technological advancements of offshore wind turbine towers.³³

Offshore wind energy offers the huge potential of diversifying its energy mix and enhancing its energy security since India is endowed with a variety of energy sources, long coastline and rising energy needs³⁴. The wind energy is set to become the foundation in the global scenario of the generation of electricity and it is estimated that it will meet more than 20 percent of total electricity demands in the world. By 2050, it is emphasized that offshore wind development is a strategic factor³⁴. Structural stability of the offshore wind turbine towers is a critical aspect and requires high design measures to endure the complex environment and guarantee the reliability of operations throughout the service life⁶⁹.

India has been able to exploit different sources of renewable energy sources, offshore wind energy has not yet been exploited even after India has over 7000 km of coastline, accessibility to funds, technical expertise, project management skills, economic necessity, a captive market and the determination to go green⁵⁵. In order to achieve the full potential of offshore wind energy, India can take the experience it has gained in the onshore wind sector and apply the successful lessons learned by the European frontrunners^{41,42}. The study at hand will be an attempt at a comprehensive overview of offshore wind turbine towers, in the context of India, opportunities, challenges, design considerations and technological advancements, as well as an examination of the factors that can influence the rise of the offshore wind energy sector in India.

Evaluation of the policy systems in countries having substantial offshore wind farms installations gives important ideas about the crucial aspects of good policy formulation which is fundamentally important to identify the major variables that can be used to catalyze the offshore wind energy in the Indian setup. Such development needs a diverse approach to building offshore wind energy in India, suggesting policy frameworks, technology and economic incentives³¹. One of the essential parts concerning the development of offshore wind power is the discovery and the solution of the factors which can lead into its development, such as Governmental policy encouragement, monetary financial options, regional talent supply, corporate investments and establishment of constructing an amenability environment²⁵.

Financial incentives and innovative schemes offered by the government are essential in achieving scaling up of wind energy to fulfil national energy demand in a sustainable way and the wind energy sector in India has been significantly

expanded by favorable government policies and the evolving understanding of the necessity to have provisions of sustainable sources of energy²⁸. The growth of the offshore wind farms has drawn growing interest because there is little space to place on-shore wind farms, also the wind is both stronger and more consistent at sea than on land⁶⁹. The rising power demand in India coupled with the current trends of energy supply will not be sustainable in the near future, which makes it necessary to tap into alternative sources of energy like offshore wind⁴².

Design Considerations for Offshore Wind Turbine Towers

Loading conditions: The offshore wind turbine towers structural design critically depends on a thorough and detailed structural analysis and evaluation of the complicated environmental loads they will encounter, which covers diverse forces such as wind, wave, sea currents and the effect of ice loads that may occur in specific areas. Figure 1 represents loading conditions for offshore wind turbine towers. Elaborate numerical models are required to describe the dynamic effects around the tower system and examine the complex hydrodynamic forces on the structure to evaluate their structural consequences⁷⁴. These structures require thorough consideration of many factors, such as the seismic activity, the interaction of soil and structure and the hydrodynamic forces¹⁶.

In places prone to earthquakes, like some coastal parts of India, stringent seismic analysis and design are important factors in structuring the offshore wind turbines²⁹. In the design of offshore wind turbines due to earthquake loading, performance-based design issues can be important including the possibility of permanent tilting of turbines mounted on Caisson type foundations or tripod supported structure³⁰.

Earthquakes present a serious threat to offshore wind turbines in several ways⁶⁰. Ground shaking creates an inertial load directly on the structure especially in its lateral direction; the height of the tower and its flexibility increase its vulnerability to large deformations. Though the long natural vibration of the turbine can help dampen the effect of high-frequency contents in the seismic energy spectrum, the damping is not complete, especially with near-field events that have long-period pulse-like motions⁴⁶. Resonance, where the natural frequency of the turbine coincides with the natural frequency of the seismic excitation, may significantly increase the amplitude of vibration and the stress and may lead to buckling or collapse.

Vertical excitation is even more dangerous, because the higher natural frequency of the tower in this direction enhances the level of stress, which may cause buckling⁵². The response of turbines is also aggravated by coupled loads, whereby the coastal environment is usually characterized by the co-occurrence of wind and wave forces that combine with seismic activity to increase vulnerability more than the total of individual effects⁶. Liquefaction of soil increases

foundation-based risks. Saturated layers of sand may liquefy due to shaking and gradually lose bearing capacity, making fluid-like deformations that can tilt or collapse the foundation^{10,27}.

There are also other threats caused by submarine landslides which are often caused by earthquakes. Turbines that have a foundation in a sliding path are subject to catastrophic displacement or structural collapse and being near active faults, can result in the structure being directly exposed to rupture, displacement and severe deformation or collapse^{52,70}. Dangers are presented by Tsunamis which are often created by earthquakes underwater. The hydrodynamic forces generated by high wave height and run-up may exceed the design capacity of the tower leading to unreasonable bending moments and shear stresses¹⁷.

The collisional damage of floating debris that is usually a hallmark of Tsunamis, can cause localized punctures, whereas the turbulence-induced erosion of seabed materials

around the foundation can cause the foundation to weaken and sink⁵⁷. The earthquake and the following tsunami waves can also cause liquefaction that can further reduce soil stiffness and damping and increase dynamic loads on the foundation⁷⁹. As a result, a damaged building that is subjected to disastrous tsunami activities experiences a significantly high probability of collapse⁶¹. Most of the current offshore wind power plants were not planned with specific reference to the parameters of seismic events, thus exacerbating such weaknesses⁸⁰.

Soil characteristics and Foundation Design: The nature of the seabed soil plays a critical role in the selection of the type of foundation to be used on the offshore wind turbine towers because the soil will define the load bearing capacity and the overall stability of the offshore tower foundation. The choice of foundation type is one of the design decisions that is highly dependent on the soil conditions of the place of installation, water depth and the wider environment context⁵³.

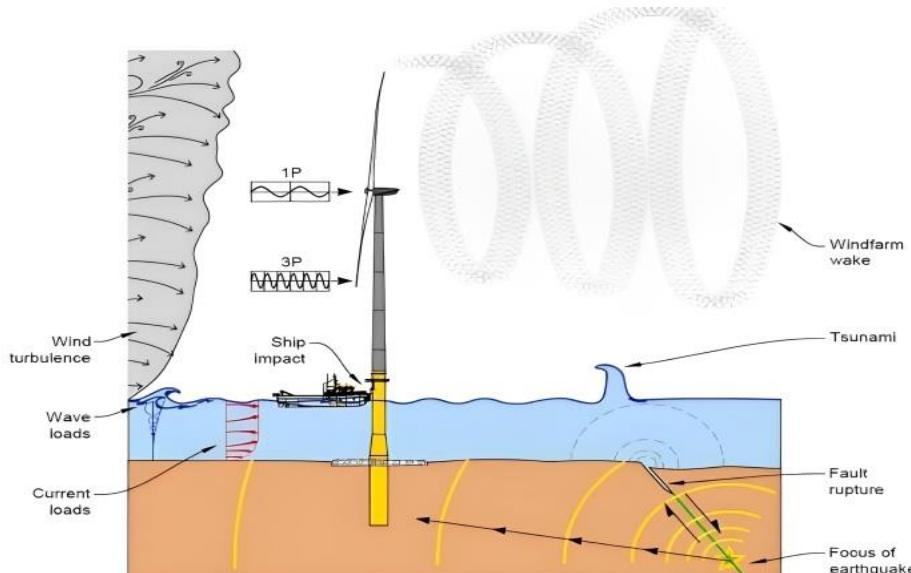


Figure 1: Loads on the OWTTs

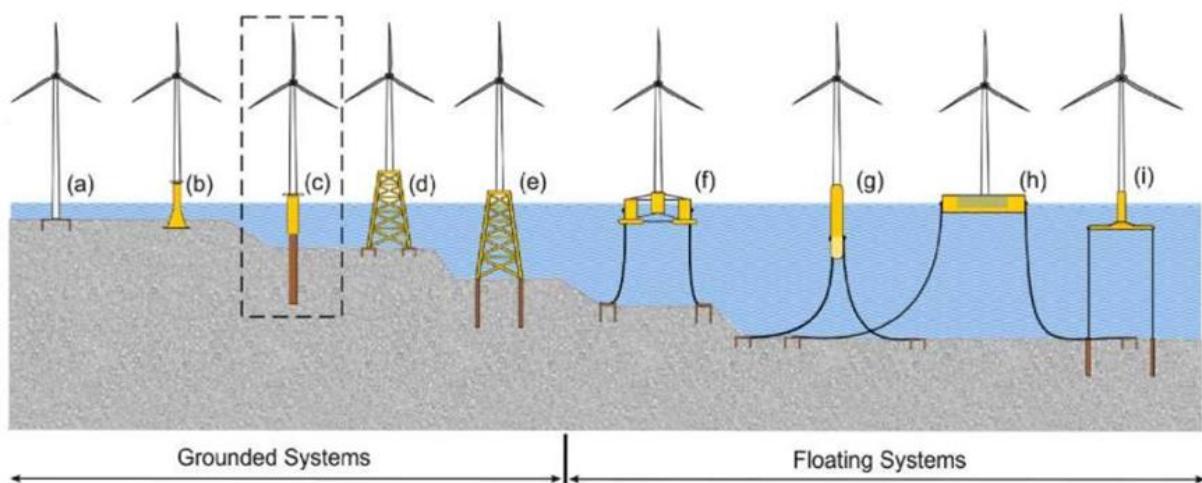


Figure 2: Different types of foundations: (a) suction caisson, (b) gravity based, (c) monopile, (d) jacket on suction caissons, (e) jacket on slender piles, (f) semi-sub), (g) SPAR, (h) barge, (i) TLP

Common foundation options include monopiles, jacket structures, gravity-based structures and floating foundations, each offering unique advantages and suitability depending on the site characteristics³. For offshore wind turbines, the tower height typically ranges from 60 to 80 meters³⁴. The deployment of floating foundations simplifies the installation and decommissioning procedures of offshore wind turbines⁸. Semi-submersible platforms, spar-buoy and tension leg platforms represent the primary types of floating offshore wind foundations⁶⁹. Spar platforms, known for their small water plane area, deep draft and low center of gravity, exhibit superior hydrodynamic performance²³.

The cost of offshore wind turbine foundations typically accounts for 15–35% of the total project expenses, varying based on location and wind farm size⁵³. As the industry moves towards deeper waters and larger wind farms located farther from the shore, the design of foundations become more complex, placing a greater emphasis on innovative and cost-effective solutions⁴⁰. Concrete support structures are emerging as a viable alternative to steel, particularly for larger turbines and deeper water depths⁴⁴.

The development of tension leg platforms demonstrates the ability of robust tethers to reduce surge oscillations, which are a prominent concern in challenging sea conditions¹⁹. Furthermore, floating platforms can mitigate loads in the tower with a properly designed control system. The dynamic behavior of monopile-supported offshore wind turbines in clay soils necessitates careful consideration of soil-structure interaction to ensure structural integrity and stability⁷⁵. The design of monopiles relies on empirical data and industry standards derived from the offshore oil and gas sector; however, the loading conditions on offshore wind turbines are distinct, characterized by strong cyclic loading from wind and wave loads, which occur during both extreme and operational conditions^{11,18,26}.

Soil-structure interaction is an important consideration in the design of offshore wind turbines, as changes in soil

properties can alter the stiffness of the foundation and shift the natural frequency of the structure⁵. Accurate modelling of soil behavior under cyclic loading is crucial for predicting the long-term performance and reliability of offshore wind turbine foundations. Monopiles are often used in shallow water depths, but jacket structures are favored in deeper waters because they are more stable and resistant to overturning moments¹¹.

The complex soil-structure interaction has a significant impact on the dynamic properties of offshore wind turbines and advanced numerical modelling methods have to be employed in order to capture these effects accurately⁷⁶. Moreover, the tower structure should be informed by strict safety regulations including the redundancy of systems and protective measures to eliminate the possibility of such disastrous system failures.

Fatigue: Although the wind- and wave-induced cyclic loading is mitigated significantly, tower structures have to deal with the issues of fatigue. To carry out a critical evaluation of fatigue vulnerability, however, requires advanced methods of analysis, especially S-N curves and fracture-mechanics concepts, to estimate the fatigue life of the structure⁴⁹.

Fatigue life is an important design parameter of the offshore wind turbine foundation, especially in the stiff clay deposits, as the monopile-tower transition can be subjected to high stresses¹¹. The design of offshore wind turbines monopile foundations in clay soils requires analysis of dynamic soil-structure interaction to ensure that the structures are serviceable in a long-term cyclic loading regime. Unlike the common fatigue-damage analysis, the variability of soil properties over long timescales is traditionally not considered, but such variations may have a significant impact on the lifetime of wind turbines in the offshore when they are built on loose sand¹².

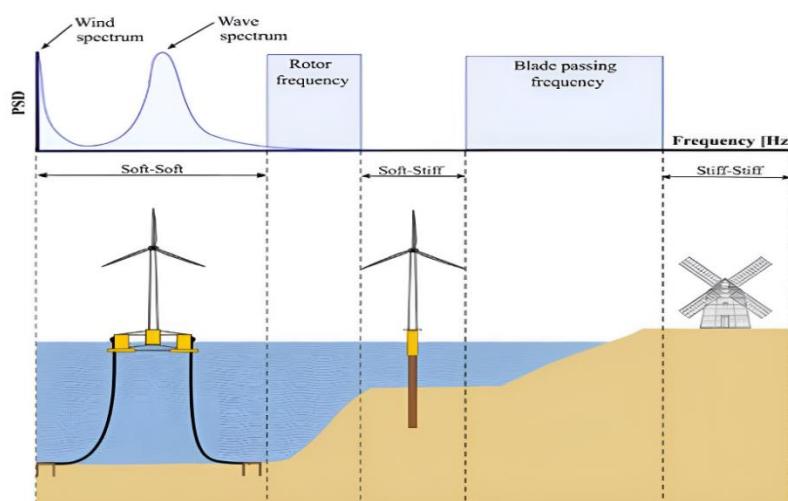


Figure 3: Schematics of OWTTs

The design of offshore wind turbine foundations must consider the potential for cyclic degradation of the soil under repeated loading, which can lead to permanent pile settlement and tilting of the wind turbine⁶⁸. The assessment of the ultimate limit state and fatigue limit state of offshore wind turbine support structures is crucial to ensure structural integrity and prevent failures under extreme loading conditions. Scour, the erosion of soil around the foundation, has minimal effects on the system's natural frequency and serviceability limit state design but significantly impacts the ultimate limit state design and reduces the fatigue life of tripod foundations³⁹.

Vibrations: The research in the vortex-induced vibrations caused by the wind and ocean currents highlights the importance of critical research of hydrodynamic forces and their influence on structural stability¹⁵. Existence of vibrations in offshore turbine structures has great impacts on its structural effectiveness and durability in the future as well as their operational applicability⁷⁸. To avoid system resonance, the natural frequency of the soil-monopile-tower system is in practice, maintained considerably lower than the turbine operating frequencies. This avoidance is an essential design requirement i.e. the natural frequency of the system should not be too close to the operating conditions of a turbine¹¹.

Both soft-soft and soft-stiff design approaches are based on ensuring that the natural frequency of the system is not close to either the 1P and 3P frequencies. At the same time, there is a need to ensure that these natural frequencies are less than the peak response frequency to avoid inappropriate modal interactions. Although some of the methodologies provide a wide latitude on selection, correct estimation of the frequency is essential²⁴.

Technological Developments in Offshore Wind Turbine Tower Design

High-Strength Materials and Innovative Structural Concepts: Advances in material science recently have allowed high-strength steel and composite materials in the production of raised turbine mounted offshore wind turbine towers, resulting in lighter and stronger structures⁴⁴. The modern construction of high-rise structural design often incorporates new structural ideas into high efficiency, low material consumption, low structural weight and overall performance such as tapered towers, lattice structure, hybrid systems etc.³⁵ Structural efficiency has also seen dramatic results with the use of new structural forms and high-performance materials that have produced much more efficient structures and simultaneously reduced component mass⁷². The offshore wind turbine structural systems should meet the unique requirements of the marine environment. Therefore, advances in material science are already being used to improve performance and durability as well.

To make the structures lighter, incursion into high-strength steels, composite laminates and high-performance protective

coatings is underway to enhance corrosion resistance and remain fatigue resistant¹⁶. Modern innovations in material science and structural engineering present new compositions strategies and geometrical systems that have the potential to take the performance and long-term durability characteristics of offshore wind power turbine towers to the next new level⁴⁸.

Advanced Monitoring and Control Systems:

Implementation of advanced monitors, or methods of integrating sensors, data-analysis and predictive-maintenance tools, enables real time assessment of a structure, allowance of early detection of onset failures and adjustable parameters of operation¹. Towers of offshore wind turbines are very large and very complex systems which experience dynamic impacts of the environment and working stress. Contemporary sensor applied systems provide precise information to track the health of structures, to conduct proactive turbine maintenance and to optimize performance, thus increasing reliability and lifetime.

At the same time, sophisticated control systems are capable of active vibration damping and reducing the impact of stress concentration and improving their structural stability. RTMS provides the high-resolution data essential to quantify structural-health status through the process of structural-health-monitoring and predictive-maintenance, whereas real-time control mitigates vibration and reduces real-time stress-concentrations³⁸.

A monitoring framework based on digital twins can serve as a tool to evaluate the state of operation of offshore wind turbine support structure in real-time. All that is recorded in the monitoring system is the structure displacement along with the environmental parameters that allow the generation of high-fidelity data that in-turn can be used in decision-making processes. Such holistic solution integrates the structural processes simulated in a digital twin with the measurements retrieved via sensors fitted in the structure, increasing the accuracy and the resilience of the system⁶⁷. A data-driven approach to structural monitoring has been developed that focuses on speeding up crack detection in primary stages as well as being able to predict crack development in an attempt to make a crack propagation close to structural failure to ensure maintenance carried out in sufficient time to address these cracks.

Crack propagation can even occur to improve its sustainability. In this respect, digital twin technology played a pivotal role, particularly enhancing real-time tracking capacities and anticipatable upkeep, which, in unison, ensure structural integrity and prolong work life. As such, digital twin technologies are beneficial in enhancing the structural integrity and operational lifespan of the towers of offshore wind turbine towers significantly⁷⁹. Condition monitoring technologies have recently spread to wind-power installations over the last few years, providing diagnostic data about the status of the health of individual components and subsystems. Such data has a positive impact on

determining when preventive maintenance can be scheduled before a failure, or a critical malfunction can occur.

Smart Tower Technologies: The potential promise of smart tower technologies (combining self-sensing materials, active control and adaptive structural elements) is to yield wind turbine towers that are stronger, more efficient and more responsive in tandem¹⁴. Tuned mass dampers, heave plates and blade pitch control have shown to be good options on mitigating the effect of the wind and wave forces. They are, however, effective only when the space is properly located and when design parameters are specifically adjusted⁶².

FEM modelling for Dynamic Analysis: Finite element analysis is an indispensable tool in the dynamic analysis of offshore wind turbine towers, particularly when considering monopile-supported structures embedded in clay, where the soil-structure interaction significantly influences the overall system behavior. Aeroelastic analysis of wind turbine structures is essential for understanding their structural response, especially in the context of taller structures and complex environmental conditions²². Developing advanced numerical models is essential for accurately simulating the dynamic response of offshore wind turbine support structures under extreme conditions such as static wind loads, static current loads and wave loads⁷⁴.

Typically, the dynamic analysis of offshore wind turbines is performed using finite element methods in the time domain, accounting for the overall mass of the structure to achieve an economical design solution. The design phase should incorporate comprehensive assessments of potential structural fatigue to ensure that the wind farm can operate reliably for its intended 20- to 25-year lifespan⁷³.

Optimizing pre-design models for offshore wind turbines with jacket support structures is crucial to maintain a balance between simulation accuracy and computational efficiency, particularly when multiple load simulations are required⁵⁹. Furthermore, novel tower designs, such as multi-legged and hybrid structures, are being investigated to improve stability and reduce material costs²⁰. Floating offshore wind turbine technology is gaining traction, enabling the deployment of wind turbines in deeper waters, where wind resources are more abundant⁷⁸. The convergence of materials science, structural engineering and control systems has paved the way for the development of smart tower technologies that can adapt to changing environmental conditions and optimize performance in real-time. Advancements in automation and robotics are revolutionizing the manufacturing and installation processes of offshore wind turbine towers²¹.

Automated welding techniques, robotic inspection systems and remotely operated vehicles enhance efficiency, reduce labour costs and improve safety during construction and maintenance activities⁵⁴. The application of digital twins, virtual replicas of physical assets, enables comprehensive

simulation and optimization of offshore wind turbine tower performance under various operating conditions⁸⁰. Ongoing advancements in offshore wind turbine technology are focused on identifying effective strategies to minimize the levelized cost of energy while maximizing annual energy production⁵¹.

These aspects, combined with intelligent controls, active damping units and new materials, will contribute to the quest for a reduced levelized cost of energy¹⁷. The integration of these technologies will drive the future development of more efficient, reliable and cost-effective offshore wind energy systems^{43,56}.

Approaches to Designing Offshore Wind Turbine Towers for the Indian Context

India's unique geographical and environmental conditions necessitate a tailored approach to designing and constructing offshore wind turbine towers. Comprehensive site assessments are crucial to understand the local wind resource, seabed conditions and potential environmental impacts. The most appropriate choice of foundation (monopiles, jackets or floating platform) should consider analysis of water depth, soil conditions and local wave climate. Each of these foundation options has its own benefits and limitations that may vary based on these parameters. Monopiles are also efficient to manufacture and build in a shallow-water environment whereas jacket foundations can be more versatile to fit various seabed and structural redundancy situations.

On the other hand, usage of floating platforms is usually a requirement in deep-water sites as they reduce horizontal and vertical loading¹¹. Thorough study carried out has given rise to the fact that coastal areas of India are prone to persistent cyclones and Tsunamis and therefore, structural solutions are the need which can counter such intense meteorological and seismic events. One area of study involves the application of gyrostabilizers: newly published reports suggest that gyrostabilizers significantly reduce peak motion amplitudes in both regular and irregular wave conditions, providing significant resilience benefits on platforms with barge-mounted tower configurations⁹.

One of the requisites of the offshore wind industry, how to sensitively model the vertical balance of forces between the wind and waves and the tower structure, particularly under time-varying dynamic conditions, is currently being addressed through the development of advanced numerical modelling techniques. Computational fluid dynamics, along with finite element analysis, provides such methodological rigor to allow such designers to optimize initial layouts so that they may be understood to provide maximum structural integrity and performance consistency⁷⁴.

The characteristics of a new rigorous modelling approach that would explore the issues of soil-structure interaction in a multi-layered media require a combination of elastoplastic

and fluid-structure interaction capacities, particularly when exploring issues of the dynamic response of towers when subjected to various loadings.

This integration will allow performing a complete study of how the soil structure coupling mechanisms operate and what role nonlinear material behavior, boundary conditions and loading type play³¹. The incorporation of real-time monitoring technologies, namely, the sensors and data analytics will further allow ongoing tower health monitoring, to further enhance the preventative maintenance approach and to avoid the need to experience a costly downtime⁶³.

Offshore wind power is easily achievable in India as long as the project development is done most efficiently by minimizing material demands, construction cost and operational expenses as minimal as possible. The operation of offshore wind turbine towers has to address the logistical challenges associated with the transportation and infrastructure of large parts to distant seas as well. Also, the focus on local production and building the local supply chain in India requires the inclusion of materials and parts produced on local soil, which trigger economic growth and energy independence⁵⁰. The design and the implementation of any tower construction project should match the international standards and best practices as presented by the International Electrotechnical Commission (IEC) and DNV GL, as well as the unique sets of laws that regulate local realities and environmental laws⁴.

Opportunities for Offshore Wind Energy Development in India

The currently estimated practical Indian offshore wind resource is about 30 GW with the coastal belts of the east and west coast being prime loci. The National Institute of Wind Energy (NIWE) has identified territories fitting large-scale offshore development, referring Gujarat and Tamil Nadu as the focuses of future program implementation^{13,15,33}. The policy framework in India addresses the issue of capacity growth in each type of renewable technology including offshore wind as part of the global goal of reducing carbon emissions and enhancing energy security⁴⁵.

One of the wind developments in the Gulf of Khambhat in Gujarat has emerged as a very crucial market to provide an offshore wind development as Indian firms have united with the Government to design a 1,000 MW wind farm⁶⁵. The project, drawn up in partnership with foreign stakeholders, aims to be a reference point to future offshore wind projects in India. A program of expansion of the offshore wind-energy provision has been initiated by the Government of Tamil Nadu and the Tamil Nadu Energy Development Agency has been tasked with the responsibility of exploring the maritime wind-energy resource within the State¹³. A 1-GW pilot project has been suggested as a way of valuing and advancing the offshore wind region in Tamil Nadu⁷¹.

Challenges to deploying and adopting Offshore Wind Turbine Technology in India

Although the sector has huge untapped potential, offshore wind power in India is still at a nascent stage, which requires further development of technology to drive growth. Offshore wind projects involve substantial upfront capital expenditure, encompassing expenses related to turbine manufacturing, transportation, installation and grid connection infrastructure. Detailed financial planning and risk assessment are essential to ensure the long-term viability of these projects³.

India needs to augment its technological know-how and develop specialized infrastructure to support the construction, operation and maintenance of offshore wind farms⁴¹. Training programs, technology transfer agreements and research collaborations can help bridge this gap.

Establishing robust grid connectivity and transmission infrastructure is a challenging task to effectively transmit electricity generated from offshore wind farms to onshore demand centers. Upgrading grid infrastructure and implementing smart grid technologies are critical steps. Comprehensive environmental and social impact assessments are necessary to evaluate the effects of offshore wind projects on marine ecosystems, fishing communities and coastal habitats. These assessments should involve stakeholder consultations and mitigation strategies to minimize adverse impacts.

A clear and consistent policy and regulatory framework is crucial to provide developers and investors with the certainty and confidence needed to invest in offshore wind projects²⁸. Drawing lessons from Europe's success in offshore wind energy, attributable to its proactive and investor-centric policies, India has the opportunity to tailor and implement similar strategies that can catalyze the growth of its own offshore wind sector.

Natural disasters such as cyclones, Tsunamis and earthquakes can be a major threat to offshore wind turbine towers⁵⁶. Cyclonic phenomenon typical of the Indian coastline can produce high wind velocities and sea conditions, which can cause high structural loading of turbine towers and foundations and result in damage or structural collapse; moreover, the corrosive marine environment accelerates material degradation and requires effective protective strategies and ongoing inspection to ensure structural integrity⁴³.

In the areas where there are possible seismic activities, the possibility of instability in the offshore wind turbine foundation due to the ground motion must be carefully considered; therefore, due to the application of the latest seismic resistant technology and the installation of the advanced monitoring system should be the top priorities to achieve the long-term stability and structural integrity of the system and the continuity of the operation.

Emerging Innovations and Future Trends

As the world strives to mitigate climate change and transition to cleaner energy sources, offshore wind energy has emerged as a promising alternative. Growing energy demand, especially in developing nations like India, is propelling the need for reliable and sustainable power sources. To mitigate climate change, offshore wind energy has been a suitable alternative³⁰.

Domestic Production of Offshore Wind Components:

Efforts are underway to develop indigenous manufacturing capabilities for offshore wind turbine parts which would decrease reliance on imports and reduce costs. Initiatives that promote local production through Government incentives and international investments are vital for nurturing a thriving offshore wind sector.

Emerging Focus on Floating Offshore Wind Turbine Technology:

Academic discourse has increasingly centered on the potential of floating wind turbine technology, particularly for India's deeper offshore regions. A system of floating platforms enables the installation of wind turbines in offshore open areas and sidestepping the limitations of the traditional foundations anchored to the sea floor. Such flexibility gives significant space in which offshore wind energy can be developed in the country.

Government-Industry Collaboration: The development of the offshore wind energy sector in India becomes progressively dependent on long-term cooperation between the Government and the business. Global partnerships between the State and the commercial world are a must when it comes to funding project initiatives, providing access to high-level technologies and ensuring that the project is on track. Moreover, Government support in research and development matters could spark innovation and neutralize prevailing technological limitations.

Conclusion

The large-scale implementation of offshore wind turbine technology will provide India with a huge benefit to diversify its energy portfolio, which will also help India to achieve its renewable energy goals and will significantly play its part in contributing to efforts to mitigate climate change internationally. With the right policy conditions and the continued technological improvements, India has the potential to become one of the key players in the industry of offshore wind energy in the Asia-Pacific region. The continuous development of the offshore wind sector will necessitate the elimination of these existing issues, as well as the nurturing of innovation and sustainability in order to maintain long term sustainability of the industry.

Disaster research is critical for India's offshore wind energy development as it guides the design of resilient infrastructure and the creation of effective risk management strategies made for India's cyclone-prone coasts. With the adoption of enhanced early warning systems and best-practice directions

on work and regulatory mechanisms, researchers can mitigate risks of disasters and improve long term viability and safety of offshore wind projects. The latest digital technology, especially digital twin technology and automation, is about to transform offshore wind farm management and maintenance. The innovations offer real-time monitoring and predictive maintenance, which ensure better efficiency and safety, optimizing the performance of an operation, reducing down time and ultimately improving the profitability of an offshore wind project.

A continued governmental encouragement is a crucial component of the further rise of the offshore wind energy industry in India. It is vital to build a coherent regulatory system and provide specific financial incentives to research and development to attract investment and enable the offshore wind to be developed rapidly.

The development of offshore wind power should entail a stringent developmental framework that is lifecycle-based and embeds sustainability considerations into the entire process of development so that the potential of offshore wind power can be extensively harnessed to serve the energy demands of India. The application of life-cycle assessment together with embracing environment friendly construction technologies will narrow down the ecological footprint and will safeguard marine life and hence will maximize energy production.

References

1. Abaei M.M., Kumar S., Arzaghi E., Golestani N., Abdussamie N., Garaniya V., Salehi F., Asadnia M., Hunter T.S., Pichard A. and Abbassi R., Developing offshore renewable energy systems in Australia: Existing regulatory challenges and requirements for reliability assurance, *Ocean and Coastal Management*, **257**, 107316, [https://doi.org/10.1016/j.ocecoaman.2024.107316 \(2024\)](https://doi.org/10.1016/j.ocecoaman.2024.107316)
2. Alexandrou D., An Ocean of Potential, [https://gwec.net/an-ocean-of-potential-white-paper-download/ \(2023\)](https://gwec.net/an-ocean-of-potential-white-paper-download/)
3. Alluri S.K.R., Gujjula D., Krishnaveni B.V., Ganapathi D., Phanikumar S.V.S., Ramanamurthy M.V. and Atmanand M.A., Offshore Wind Feasibility Study in India, In Teche Books, [https://doi.org/10.5772/intechopen.74916 \(2018\)](https://doi.org/10.5772/intechopen.74916)
4. Anwar R., Reddy T.V.G., Mundra S., Ojha P.N. and Singh B., Condition Assessment of Induced Draught Cooling Towers Located in Different Climatic Regions of India, IOP Conference Series Earth and Environmental Science, **796**(1), 12029, [https://doi.org/10.1088/1755-1315/796/1/012029 \(2021\)](https://doi.org/10.1088/1755-1315/796/1/012029)
5. Arany L., Bhattacharya S., Adhikari S., Hogan S.J. and Macdonald J.H.G., An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models, *Soil Dynamics and Earthquake Engineering*, **74**, 40, [https://doi.org/10.1016/j.soildyn.2015.03.007 \(2015\)](https://doi.org/10.1016/j.soildyn.2015.03.007)
6. Avossa A.M., Demartino C., Contestabile P., Ricciardelli F. and Vicinanza D., Some Results on the Vulnerability Assessment of HAWTs Subjected to Wind and Seismic

Actions, *Sustainability*, **9(9)**, <https://doi.org/10.3390/su9091525>, 1225 (2017)

7. Bao Y. and Li H., Machine learning paradigm for structural health monitoring, *Structural Health Monitoring*, **20(4)**, 1353, <https://doi.org/10.1177/1475921720972416> (2020)

8. Bashetty S. and Özçelik S., Review on Dynamics of Offshore Floating Wind Turbine Platforms, *Energies*, **14(19)**, 6026, <https://doi.org/10.3390/en14196026> (2021)

9. Benbouzid M., Berghout T., Sarma N., Djurović S., Wu Y. and Ma X. Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review, *Energies*, **14(18)**, 5967, <https://doi.org/10.3390/en14185967> (2021)

10. Bilotta E., Chiaradonna A., Fasano G., Flora A., Mele L., Nappa V., Lirer S. and Fioravante V., Experimental evidences of the effectiveness of some liquefaction mitigation measures, *Report*, **114**, 682, <https://doi.org/10.2749/guimaraes.2019.0682> (2019)

11. Bisoi S. and Haldar S., Design of monopile supported offshore wind turbine in clay considering dynamic soil-structure-interaction, *Soil Dynamics and Earthquake Engineering*, **73**, 103, <https://doi.org/10.1016/j.soildyn.2015.02.017> (2015)

12. Brazil, Evonik – precipitated silica, *Focus on Pigments*, **2016(9)**, 3, <https://doi.org/10.1016/j.fop.2016.09.035> (2016)

13. Chandarahaasan C. and Percis E.S., The accessible large-scale renewable energy potential and its projected influence on Tamil Nadu's grid stability, *Indonesian Journal of Electrical Engineering and Computer Science*, **31(2)**, 609, <https://doi.org/10.11591/ijeecs.v31.i2.pp609-616> (2023)

14. Chen B., Song X., Li W. and Wu J., Vibration Control of a Wind-Excited Transmission Tower-Line System by Shape Memory Alloy Dampers, *Materials*, **15(5)**, 1790, <https://doi.org/10.3390/ma15051790> (2022)

15. Chen Q., Fu S. and Zou Z., Dynamic Response Analysis of the Offshore Wind Turbine Support Structure Under Extreme Conditions, 283, <https://doi.org/10.1115/omae2011-49094> (2011)

16. Damiani R., Design of offshore wind turbine towers, In Elsevier eBooks, Elsevier BV, <https://doi.org/10.1016/b978-0-08-100779-2.00010-6>, 263 (2016)

17. Dias F. and Dutykh D., Dynamics of tsunami waves, Springer Books, 201, https://doi.org/10.1007/978-1-4020-5656-7_8 (2007)

18. Edgers L., Bradshaw A.S. and Ebin D., A Simplified Approach to Modeling Long-Term Monopile Serviceability with Finite Element Analysis, All Days, <https://doi.org/10.4043/23969-ms> (2013)

19. Edwards E.C., Holcombe A., Brown S., Ransley E., Hann M. and Greaves D., Trends in floating offshore wind platforms: A review of early-stage devices, *Renewable and Sustainable Energy Reviews*, **193**, 114271, <https://doi.org/10.1016/j.rser.2023.114271> (2024)

20. Gamstedt E.K., Bengtsson R., Florisson S. and Bernhoff H., Material aspects of wooden towers for offshore wind turbines, IOP Conference Series: Materials Science and Engineering, **1293(1)**, 12031, <https://doi.org/10.1088/1757-899x/1293/1/012031> (2023)

21. Ghigo A., Faraggiana E., Giorgi G., Mattiazzo G. and Bracco G., Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review, *Renewable and Sustainable Energy Reviews*, **193**, 114302, <https://doi.org/10.1016/j.rser.2024.114302> (2024)

22. Gkantou M., Martínez-Vázquez P. and Baniotopoulos C., On the structural response of a tall hybrid onshore wind turbine tower, *Procedia Engineering*, **199**, 3200, <https://doi.org/10.1016/j.proeng.2017.09.535> (2017)

23. Guo X., Zhang Y., Yan J., Zhou Y., Shu Y., Shi W. and Li X., Integrated Dynamics Response Analysis for IEA 10-MW Spar Floating Offshore Wind Turbine, *Journal of Marine Science and Engineering*, **10(4)**, 542, <https://doi.org/10.3390/jmse10040542> (2022)

24. Harger A., Carmo L., Neto A.G., Simos A.N., Franzini G.R. and Vieira G.H.R., Modal Analysis of 15 MW Semi-Submersible Floating Wind Turbine: Investigation on the Main Influences in Natural Vibration, *Wind*, **3(4)**, 548, <https://doi.org/10.3390/wind3040031> (2023)

25. Hong S., McMorland J., Zhang H., Collu M. and Halse K.H., Floating offshore wind farm installation, challenges and opportunities: A comprehensive survey, *Ocean Engineering*, **304**, 117793, <https://doi.org/10.1016/j.oceaneng.2024.117793> (2024)

26. Huang M., Liu L., Shi Z. and Li S., Modeling of laterally cyclic loaded monopile foundation by anisotropic undrained clay model, *Ocean Engineering*, **228**, 108915, <https://doi.org/10.1016/j.oceaneng.2021.108915> (2021)

27. Hussain U. and Tangri A., Earthquake Induced Liquefaction Analysis and Ground Improvement as a Remedial Measure: A Review, IOP Conference Series Earth and Environmental Science, **889(1)**, 12035, <https://doi.org/10.1088/1755-1315/889/1/012035> (2021)

28. Kasisomayajula S.R., Compressive Study on Importance of Wind Power in India, *American Journal of Engineering Research*, **2(3)**, 27-35 (2013)

29. Kaynia A.M., Seismic considerations in design of offshore wind turbines, *Soil Dynamics and Earthquake Engineering*, **124**, 399, <https://doi.org/10.1016/j.soildyn.2018.04.038> (2018)

30. Khurshid H., Mohammed B.S., Al-Yacoubi A.M., Liew M.S. and Zawawi N.A.W.A., Analysis of hybrid offshore renewable energy sources for power generation: A literature review of hybrid solar, wind and waves energy systems, *Developments in the Built Environment*, **19**, <https://doi.org/10.1016/j.dibe.2024.100497>, 100497 (2024)

31. Kou L., Li Y., Zhang F., Gong X., Hu Y., Yuan Q. and Ke W., Review on Monitoring, Operation and Maintenance of Smart Offshore Wind Farms, *Sensors*, **22(8)**, 2822, <https://doi.org/10.3390/s22082822> (2022)

32. Kumar J.C.R., Kumar D.V., Baskar D., Arunsi B.M., Jenova R. and Majid M., Offshore wind energy status, challenges, opportunities, environmental impacts, occupational health and safety management in India, *Energy & Environment*, **32**(4), 565, <https://doi.org/10.1177/0958305x20946483> (2020)

33. Kumar J.C.R. et al, Wind energy programme in India: Emerging energy alternatives for sustainable growth, *Energy & Environment*, **30**(7), <https://doi.org/10.1177/0958305x19841297>, 1135 (2019)

34. Kurian V.J., Narayanan S., Ganapathy C., Wahid M.A., Samion S., Sidik N.A.C. and Sheriff J.M., Towers for Offshore Wind Turbines, AIP Conference Proceedings, <https://doi.org/10.1063/1.3464894> (2010)

35. Li M., Li H. and Wen Y., Design and performance study of a six-leg lattice tower for wind turbines, *Buildings*, **14**(4), 965, <https://doi.org/10.3390/buildings14040965> (2024)

36. Liu J., Yang G., Sun B., Wang H., Li Y. and Wang R., Assist in GHG Abatement of Offshore Ships: Design and Economic Analysis of an Integrated Utilization Model of Hydrogen-Powered Ship and Offshore Wind Power, *Sustainable Marine Structures*, **5**(2), 15, <https://doi.org/10.36956/sms.v5i2.877> (2023)

37. Lu J.Y., Mony S.K., Carlsen H. and Sixtentsson C., Solution to Design Challenges and Selections of Wind Turbine Installation Vessels, All Days, <https://doi.org/10.4043/21571-ms> (2011)

38. Machado M.R. and Dutkiewicz M., Wind turbine vibration management: An integrated analysis of existing solutions, products and Open-source developments, *Energy Reports*, **11**, 3756, <https://doi.org/10.1016/j.egyr.2024.03.014> (2024)

39. Mahmood M., Al-Wakel S.F.A. and Sirhan M.M., Effect of Partial Saturation on Ultimate Bearing Capacity of Skirted Foundations, *Engineering and Technology Journal*, **40**(5), 710, <https://doi.org/10.30684/etj.v40i5.2259> (2022)

40. Malhotra S., Selection, Design and Construction of Offshore Wind Turbine Foundations, In Tech eBooks, <https://doi.org/10.5772/15461> (2011)

41. Mani S. and Dhingra T., Offshore wind energy policy for India—Key factors to be considered, *Energy Policy*, **56**, 672, <https://doi.org/10.1016/j.enpol.2013.01.031> (2013a)

42. Mani S. and Dhingra T., Policies to accelerate the growth of offshore wind energy sector in India, *Renewable and Sustainable Energy Reviews*, **24**, 473, <https://doi.org/10.1016/j.rser.2013.03.065> (2013b)

43. Manolas D.I., Riziotis V.A., Papadakis G. and Voutsinas S.G., Hydro-Servo-Aero-Elastic Analysis of Floating Offshore Wind Turbines, *Fluids*, **5**(4), 200, <https://doi.org/10.3390/fluids5040200> (2020)

44. Mather A., Haar C. von der and Marx S., Concrete Support Structures for Offshore Wind Turbines: Current Status, Challenges and Future Trends, *Energies*, **14**(7), 1995, <https://doi.org/10.3390/en14071995> (2021)

45. National Institute of Wind Energy, <https://niwe.res.in/> (2023)

46. Nawrotzki P., Earthquake Protection Strategies for Power Plant Equipment, ASME 2005 Power Conference, 273, <https://doi.org/10.1115/power2009-81161> (2009)

47. Nugroho Cahyadi, Umar Ramli and Mithen, Forecast of Land Cover Change as a Sustainable Flood Prevention Strategy using Cellular Automata Model in Lampoko Watershed, South Sulawesi, Indonesia, *Disaster Advances*, **17**(3), 16-24 (2024)

48. O'Neill F. and Mehmanparast A., A review of additive manufacturing capabilities for potential application in offshore renewable energy structures, *Forces in Mechanics*, **14**, 100255, <https://doi.org/10.1016/j.finmec.2024.100255> (2024)

49. Pacheco J., Pimenta F., Pereira S., Cunha Á. and Magalhães F., Fatigue Assessment of Wind Turbine Towers: Review of Processing Strategies with Illustrative Case Study, *Energies*, **15**(13), <https://doi.org/10.3390/en15134782>, 4782 (2022)

50. Palraj M. and Selvam R.P., Motion control of a barge for offshore wind turbine (OWT) using gyrostabilizer, *Ocean Engineering*, **209**, <https://doi.org/10.1016/j.oceaneng.2020.107500> (2020)

51. Papadopoulos P., Fallahi F., Yildirim M. and Ezzat A.A., Joint Optimization of Production and Maintenance in Offshore Wind Farms: Balancing the Short- and Long-Term Needs of Wind Energy Operation, *IEEE Transactions on Sustainable Energy*, **15**(2), 835, <https://doi.org/10.1109/tste.2023.3308473> (2023)

52. Patil A., Jung S. and Kwon O., Structural performance of a parked wind turbine tower subjected to strong ground motions, *Engineering Structures*, **120**, 92, <https://doi.org/10.1016/j.engstruct.2016.04.020> (2016)

53. Ram S. and Mohana R., Simulation and numerical analysis of offshore wind turbine with monopile foundation, IOP Conference Series Materials Science and Engineering, **872**(1), 12046, <https://doi.org/10.1088/1757-899x/872/1/012046> (2020)

54. Reed-Martin T., Bladt and Inrotech to develop a welding robot for wind turbine foundations, <https://www.energyglobal.com/wind/14072023/bladt-and-inrotech-to-develop-a-welding-robot-for-wind-turbine-foundations> (2023)

55. Riaz M.M. and Khan B.H., Techno-Economic Analysis and Planning for the Development of Large Scale Offshore Wind Farm in India, *International Journal of Renewable Energy Development*, **10**(2), <https://doi.org/10.14710/ijred.2021.34029>, 257 (2020)

56. Robertson A. and Jonkman J., Loads Analysis of Several Offshore Floating Wind Turbine Concepts, OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information, <https://www.osti.gov/biblio/1029026> (2011)

57. Sato S. and Okuma S., Destruction mechanism of coastal structures due to the 2011 Tohoku Tsunami in the south of Fukushima, Coastal Engineering Proceedings, **1**(34), 75, <https://doi.org/10.9753/icce.v34.structures.75> (2014)

58. Schafhirt S., Kaufer D. and Cheng P.W., Optimisation and evaluation of pre-design models for offshore wind turbines with

jacket support structures and their influence on integrated load simulations, *Journal of Physics, Conference Series*, **555**, 12088, <https://doi.org/10.1088/1742-6596/555/1/012088> (2014)

59. Staubach P. and Wichtmann T., Long-term deformations of monopile foundations for offshore wind turbines studied with a high-cycle accumulation model, *Computers and Geotechnics*, **124**, 103553, <https://doi.org/10.1016/j.compgeo.2020.103553> (2020)

60. Strategy for Establishment of Offshore Wind Energy Projects, <https://web.archive.org/web/20231004214333/www.indiaenvironmentportal.org.in/files/file/Strategy%20for%20Establishment%20of%20Offshore%20Wind%20Energy%20Projects.pdf> (2023)

61. Sumer B.M., Ansal A., Çetin K.Ö., Damgaard J., Günbak A.R., Hansen N.E.O., Sawicki A., Synolakis C.E., Yalçiner A.C., Yüksel Y. and Zen K., Earthquake-Induced Liquefaction around Marine Structures, *Journal of Waterway Port Coastal and Ocean Engineering*, **133(1)**, 55, [https://doi.org/10.1061/\(asce\)0733-950x\(2007\)133:1\(55\)](https://doi.org/10.1061/(asce)0733-950x(2007)133:1(55)) (2006)

62. Sun C., Jahangiri V. and Sun H., Adaptive bidirectional dynamic response control of offshore wind turbines with time-varying structural properties, *Structural Control and Health Monitoring*, **28(11)**, <https://doi.org/10.1002/stc.2817> (2021)

63. Svendsen H., Optimised operation of low-emission offshore oil and gas platform integrated energy systems, *arXiv*, Cornell University, <https://doi.org/10.48550/arXiv.2202.05072> (2022)

64. Thomas R.L., Dababneh O. and Gourma M., Wavy Wind-Water Flow Impacts on Offshore Wind Turbine Foundations, *Journal of Marine Science and Engineering*, **13(5)**, 941, <https://doi.org/10.3390/jmse13050941> (2025)

65. Umarji V. and Damor K., Gujarat may get India's first offshore wind power project, https://www.business-standard.com/article/economy-policy/gujarat-may-get-india-s-first-offshore-wind-power-project-114100901328_1.html (2023)

66. Wang M., Wang C., Hnydiuk-Stefan A., Feng S., İncecik A. and Li Z., Recent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutions, *Ocean Engineering*, **232**, 109168, <https://doi.org/10.1016/j.oceaneng.2021.109168> (2021)

67. Wang S. and Larsen T.J., Effect of Partial Saturation on an Offshore Wind Turbine During Storm, <https://doi.org/10.1115/iowtc2018-1075> (2018)

68. Wang X., Zeng X., Li X. and Li J., Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study, *Renewable Energy*, **132**, 129, <https://doi.org/10.1016/j.renene.2018.07.127> (2018)

69. Wang X., Zeng X., Yu H. and Lian J., Simulation of Dynamic Response of Offshore Wind Turbine with Group-Pile Foundation Using Centrifuge Tests, IFCEE 2018, <https://doi.org/10.1061/9780784479087.162> (2015)

70. Wayback Machine, <https://web.archive.org/web/20231004214333/www.indiaenvironmentportal.org.in/files/file/Strategy%20of%20Establishment%20of%20Offshore%20Wind%20Energy%20Projects.pdf> (2023)

71. Wu X., Zhang X., Bhattacharai H.B., Hwang H.J., Yang J. and Kang S., Structural behavior analysis of UHPC hybrid tower for 3-MW super tall wind turbine under rated wind load, *International Journal of Concrete Structures and Materials*, **16(1)**, <https://doi.org/10.1186/s40069-022-00542-8> (2022)

72. Wu Y., Wu H., Chung C.J., Lyu J.H., Yang S., Chen S.Y. and Chang Y.Y., Fatigue Calculation of Offshore Jacket Structural for Monitoring, IOP Conference Series Materials Science and Engineering, **588(1)**, 12015, <https://doi.org/10.1088/1757-899x/588/1/012015> (2019)

73. Xi R., Zhou Q., Lai Y. and Yu W., Investigation of Directionality Effect for 10 MW Monopile Offshore Wind Turbine Excited by Wind, Wave and Earthquakes, *Journal of Marine Science and Engineering*, **13(4)**, 727, <https://doi.org/10.3390/jmse13040727> (2025)

74. Xie M. and López-Querol S., Numerical Simulations of the Monotonic and Cyclic Behaviour of Offshore Wind Turbine Monopile Foundations in Clayey Soils, *Journal of Marine Science and Engineering*, **9(9)**, 1036, <https://doi.org/10.3390/jmse9091036> (2021)

75. Xie S., Jin X., He J., Gao J., Zhang C. and Yan Y., Applying multiple tuned mass dampers to control structural loads of bottom-fixed offshore wind turbines with inclusion of soil-structure interaction, *Ocean Engineering*, **205**, 107289, <https://doi.org/10.1016/j.oceaneng.2020.107289> (2020)

76. Young A.C., Goupee A.J., Dagher H.J. and Viselli A., Methodology for optimizing composite towers for use on floating wind turbines, *Journal of Renewable and Sustainable Energy*, **9(3)**, <https://doi.org/10.1063/1.4984259> (2017)

77. Yu L., Wang L., Guo Z., Bhattacharya S., Nikitas G., Li L. and Yuelong X., Long-term dynamic behavior of monopile supported offshore wind turbines in sand, *Theoretical and Applied Mechanics Letters*, **5(2)**, <https://doi.org/10.1016/j.taml.2015.02.003> (2015)

78. Yue Y., Tian J., Bai Y., Jia K., He J., Luo D. and Chen T., Applicability Analysis of Inspection and Monitoring Technologies in Wind Turbine Towers, *Shock and Vibration*, **2021(1)**, <https://doi.org/10.1155/2021/5548727> (2021)

79. Zhao L., Shan Z., Wang M. and Wang K., Site liquefaction characteristics of offshore wind farms under earthquakes in the South Yellow Sea, China, IOP Conference Series Earth and Environmental Science, **861(5)**, 52001, <https://doi.org/10.1088/1755-1315/861/5/052001> (2021)

80. Zhou Y., Tang C., Zhang T., Zhang Z. and Doan D.T., Digital Twins in Construction: Architecture, Applications, Trends and Challenges, *Buildings*, **14(9)**, <https://doi.org/10.3390/buildings14092616>, 2616 (2024).

(Received 09th July 2025, accepted 19th August 2025)